Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nano Lett ; 23(4): 1306-1312, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745443

RESUMO

A moiré superlattice formed in twisted van der Waals bilayers has emerged as a new tuning knob for creating new electronic states in two-dimensional materials. Excitonic properties can also be altered drastically due to the presence of moiré potential. However, quantifying the moiré potential for excitons is nontrivial. By creating a large ensemble of MoSe2/MoS2 heterobilayers with a systematic variation of twist angles, we map out the minibands of interlayer and intralayer excitons as a function of twist angles, from which we determine the moiré potential for excitons. Surprisingly, the moiré potential depth for intralayer excitons is up to ∼130 meV, comparable to that for interlayer excitons. This result is markedly different from theoretical calculations based on density functional theory, which show an order of magnitude smaller moiré potential for intralayer excitons. The remarkably deep intralayer moiré potential is understood within the framework of structural reconstruction within the moiré unit cell.

2.
Int J Med Sci ; 19(13): 1953-1964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438926

RESUMO

Background: Cedrol is a natural sesquiterpene alcohol found in Cedrus atlantica, which has been proven to have a broad spectrum of biological activities, such as antimicrobial, anti-inflammatory, analgesic, anxiolytic, and anti-cancer effects. However, the underlying anticancer mechanisms and in vivo inhibitory effects of cedrol on colorectal cancer (CRC) have not been elucidated. In the present study, we investigated the anti-CRC potential of cedrol using in vitro and in vivo models. Methods: The effects of cedrol on cell viability, cell cycle progression, and apoptosis of HT-29 and CT-26 cells were detected by MTT, flow cytometry, and TUNEL assays. Western blotting was used to measure protein expression for molecular signaling analyses. Results: Cedrol inhibited HT-29 and CT-26 cell proliferation in a time- and dose-dependent manner, with IC50 values of 138.91 and 92.46 µM, respectively. Furthermore, cedrol induced cell cycle arrest at the G0/G1 phase by regulating the expression of cell cycle regulators, such as CDK4 and cyclin D1, and triggered apoptosis through extrinsic (FasL/caspase-8) and intrinsic (Bax/caspase-9) pathways. In addition, cedrol in combination with the clinical drug 5-fluorouracil exhibited synergistic inhibitory effects on CRC cell growth. Importantly, cedrol treatment suppressed the progression of CRC and improved the survival rate of animals at a well-tolerated dose. Conclusion: These results suggest that cedrol has an anti-cancer potential via induction of cell cycle arrest and apoptosis, and it could be considered as an effective agent for CRC therapy.


Assuntos
Caspases , Neoplasias Colorretais , Animais , Pontos de Checagem do Ciclo Celular , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
3.
Nat Commun ; 13(1): 4149, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851038

RESUMO

Two-dimensional (2D) semiconducting monolayers such as transition metal dichalcogenides (TMDs) are promising channel materials to extend Moore's Law in advanced electronics. Synthetic TMD layers from chemical vapor deposition (CVD) are scalable for fabrication but notorious for their high defect densities. Therefore, innovative endeavors on growth reaction to enhance their quality are urgently needed. Here, we report that the hydroxide W species, an extremely pure vapor phase metal precursor form, is very efficient for sulfurization, leading to about one order of magnitude lower defect density compared to those from conventional CVD methods. The field-effect transistor (FET) devices based on the proposed growth reach a peak electron mobility ~200 cm2/Vs (~800 cm2/Vs) at room temperature (15 K), comparable to those from exfoliated flakes. The FET device with a channel length of 100 nm displays a high on-state current of ~400 µA/µm, encouraging the industrialization of 2D materials.

4.
Braz J Med Biol Res ; 54(10): e10891, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34287579

RESUMO

Juniperus communis (JCo) is a well-known traditional Chinese medicinal plant that has been used to treat wounds, fever, swelling, and rheumatism. However, the mechanism underlying the anticancer effect of JCo extract on colorectal cancer (CRC) has not yet been elucidated. This study investigated the anticancer effects of JCo extract in vitro and in vivo as well as the precise molecular mechanisms. Cell viability was evaluated using the MTT assay. Cell cycle distribution was examined by flow cytometry analysis, and cell apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein expression was analyzed using western blotting. The in vivo activity of the JCo extract was evaluated using a xenograft BALB/c mouse model. The tumors and organs were examined through hematoxylin-eosin (HE) staining and immunohistochemistry. The results showed that JCo extract exhibited higher cytotoxicity against CRC cells than against normal cells and showed synergistic effects when combined with 5-fluorouracil. JCo extract induced cell cycle arrest at the G0/G1 phase via regulation of p53/p21 and CDK4/cyclin D1 and induced cell apoptosis via the extrinsic (FasL/Fas/caspase-8) and intrinsic (Bax/Bcl-2/caspase-9) apoptotic pathways. In vivo studies revealed that JCo extract suppressed tumor growth through the inhibition of proliferation and induction of apoptosis. In addition, there was no obvious change in body weight or histological morphology of normal organs after treatment. JCo extract suppressed CRC progression by inducing cell cycle arrest and apoptosis in vitro and in vivo, suggesting the potential application of JCo extract in the treatment of CRC.


Assuntos
Adenocarcinoma , Antineoplásicos Fitogênicos , Neoplasias Colorretais , Juniperus , Adenocarcinoma/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia
5.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151367

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Juniperus , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Juniperus/química , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Extratos Vegetais/isolamento & purificação , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Braz. j. med. biol. res ; 54(10): e10891, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285652

RESUMO

Juniperus communis (JCo) is a well-known traditional Chinese medicinal plant that has been used to treat wounds, fever, swelling, and rheumatism. However, the mechanism underlying the anticancer effect of JCo extract on colorectal cancer (CRC) has not yet been elucidated. This study investigated the anticancer effects of JCo extract in vitro and in vivo as well as the precise molecular mechanisms. Cell viability was evaluated using the MTT assay. Cell cycle distribution was examined by flow cytometry analysis, and cell apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein expression was analyzed using western blotting. The in vivo activity of the JCo extract was evaluated using a xenograft BALB/c mouse model. The tumors and organs were examined through hematoxylin-eosin (HE) staining and immunohistochemistry. The results showed that JCo extract exhibited higher cytotoxicity against CRC cells than against normal cells and showed synergistic effects when combined with 5-fluorouracil. JCo extract induced cell cycle arrest at the G0/G1 phase via regulation of p53/p21 and CDK4/cyclin D1 and induced cell apoptosis via the extrinsic (FasL/Fas/caspase-8) and intrinsic (Bax/Bcl-2/caspase-9) apoptotic pathways. In vivo studies revealed that JCo extract suppressed tumor growth through the inhibition of proliferation and induction of apoptosis. In addition, there was no obvious change in body weight or histological morphology of normal organs after treatment. JCo extract suppressed CRC progression by inducing cell cycle arrest and apoptosis in vitro and in vivo, suggesting the potential application of JCo extract in the treatment of CRC.


Assuntos
Animais , Coelhos , Neoplasias Colorretais/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Juniperus , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Ciclo Celular , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Checagem do Ciclo Celular , Camundongos Endogâmicos BALB C
7.
Nat Mater ; 19(12): 1300-1306, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32895505

RESUMO

Two-dimensional transition metal dichalcogenide nanoribbons are touted as the future extreme device downscaling for advanced logic and memory devices but remain a formidable synthetic challenge. Here, we demonstrate a ledge-directed epitaxy (LDE) of dense arrays of continuous, self-aligned, monolayer and single-crystalline MoS2 nanoribbons on ß-gallium (III) oxide (ß-Ga2O3) (100) substrates. LDE MoS2 nanoribbons have spatial uniformity over a long range and transport characteristics on par with those seen in exfoliated benchmarks. Prototype MoS2-nanoribbon-based field-effect transistors exhibit high on/off ratios of 108 and an averaged room temperature electron mobility of 65 cm2 V-1 s-1. The MoS2 nanoribbons can be readily transferred to arbitrary substrates while the underlying ß-Ga2O3 can be reused after mechanical exfoliation. We further demonstrate LDE as a versatile epitaxy platform for the growth of p-type WSe2 nanoribbons and lateral heterostructures made of p-WSe2 and n-MoS2 nanoribbons for futuristic electronics applications.

8.
Nat Commun ; 11(1): 2428, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415121

RESUMO

2D van der Waals ferroelectrics have emerged as an attractive building block with immense potential to provide multifunctionality in nanoelectronics. Although several accomplishments have been reported in ferroelectric switching for out-of-plane ferroelectrics down to the monolayer, a purely in-plane ferroelectric has not been experimentally validated at the monolayer thickness. Herein, an in-plane ferroelectricity is demonstrated for micrometer-size monolayer SnS at room temperature. SnS has been commonly regarded to exhibit the odd-even effect, where the centrosymmetry breaks only in the odd-number layers to exhibit ferroelectricity. Remarkably, however, a robust room temperature ferroelectricity exists in SnS below a critical thickness of 15 layers with both an odd and even number of layers, suggesting the possibility of controlling the stacking sequence of multilayer SnS beyond the limit of ferroelectricity in the monolayer. This work will pave the way for nanoscale ferroelectric applications based on SnS as a platform for in-plane ferroelectrics.

9.
ACS Appl Mater Interfaces ; 12(16): 18667-18673, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32233397

RESUMO

To explore the potential of field-effect transistors (FETs) based on monolayers (MLs) of the two-dimensional semiconducting channel (SC) for spintronics, the two most important issues are to ensure the formation of variable low-resistive tunnel ferromagnetic contacts (FCs) and to preserve intrinsic properties of the SC during fabrication. Large Schottky barriers lead to the formation of high resistive contacts, and methods adopted to control the barriers often alter the intrinsic properties of the SC. This work aims at addressing both issues in fully encapsulated ML WSe2 FETs using bilayer hexagonal boron nitride (h-BN) as a tunnel barrier at the FC/SC interface. We investigate the electrical transport in ML WSe2 FETs with the current-in-plane geometry that yields hole mobilities of ∼38.3 cm2 V-1 s-1 at 240 K and on/off ratios of the order of 107, limited by the contact regions. We have achieved an ultralow effective Schottky barrier (∼5.34 meV) with an encapsulated tunneling device as opposed to a nonencapsulated device in which the barrier heights are considerably higher. These observations provide an insight into the electrical behavior of the FC/h-BN/SC/h-BN heterostructures, and such control over the barrier heights opens up the possibilities for WSe2-based spintronic devices.

10.
ACS Appl Mater Interfaces ; 11(3): 3189-3195, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30609345

RESUMO

Single crystalline Ag films on dielectric substrates have received tremendous attention recently due to their technological potentials as low loss plasmonic materials. Two different growth approaches have been used to produce single crystalline Ag films previously. One approach is based on repetitive cycles of a two-step process (low temperature deposition followed by RT annealing) using molecular beam epitaxy (MBE), which is extremely time-consuming due to the need for repeat growth cycles. Another approach is based on rapid e-beam deposition which is capable of growing thick single crystalline Ag films (>300 nm) but lacks the precision in thickness control of thin epitaxial films. Here, we report a universal approach to grow atomically smooth epitaxial Ag films by eliminating the repetitive cycles used in the previous two-step MBE method while maintaining the precise thickness control from a few monolayers to the optically thick regime, thus overcoming the limitations of the two aforementioned methods. In addition, we develop an in situ growth of aluminum oxide as the capping layer to protect the epitaxial Ag films. The quality of the epitaxial Ag films was evaluated using a variety of techniques, and the superior optical performance of the films is demonstrated by measuring the propagation length of surface plasmon polaritons (∼80 µm at 632 nm) as well as their capability to support a plasmonic nanolaser in infrared incorporating an InGaAsP quantum well as the gain media.

11.
ACS Appl Mater Interfaces ; 10(19): 16874-16880, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29687706

RESUMO

Two-dimensional (2D) semiconductors, particularly the direct-gap monolayer transition metal dichalcogenides (TMDs), are currently being developed for various atomically thin optoelectronic devices. However, practical applications are hindered by their low quantum efficiencies in light emissions and absorptions. While photonic cavities and metallic plasmonic structures can significantly enhance the light-matter interactions in TMDs, the narrow spectral resonance and the local hot spots considerably limit the applications when broadband and large area are required. Here, we demonstrate that a properly designed distributed Bragg reflector (DBR) can be an ideal platform for light-coupling enhancement in 2D TMDs. The main idea is based on engineering the amplitude and phase of optical reflection from the DBR to produce optimal substrate-induced interference. We show that the photoluminescence, Raman, and second harmonic generation signals of monolayer WSe2 can be enhanced by a factor of 26, 34, and 58, respectively. The proposed DBR substrates pave the way for developing a range of 2D optoelectronic devices for broadband and large-area applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...